汽车芯片主要分为功能芯片、功率器件和传感器三大类。在传统燃油车中,平均芯片搭载量约为 500-600 颗/辆,而随着前面提到的汽车电动化、智能化的演进,平均芯片搭载量已提升至 1000 颗/辆,在新能源车中更是超过了 2000 颗/辆,未来随着电车智能化的升级,还有望提升至 3000 颗/辆,甚至更多。
那么,到底什么是 L2 级别自动驾驶呢?事实上,市面上有两套自动驾驶分级标准,分别是 2014 年国际汽车工程师学会(SAE)首发的《SAE J3016 推荐实践:道路机动车辆驾驶自动化系统相关术语的分类和定义》,简称《SAE 驾驶自动化分级》;以及 2021 年我国国家市场监督管理总局出台的《汽车驾驶自动化分级》国家标准(标准号:GB/T 40429-2021)。两者的区别在于国家市场监督管理总局、国家标准化管理委员会将 L1 至 L2 级别统称为辅助驾驶,L3 至 L5 级别统则称为自动驾驶。下面,我们以国际标准为例来具体介绍一下。
2014 年~2018 年间仍以分布式 E/E 架构为主,跨域集中式架构刚起步,主流玩家 Mobileye、英伟达和瑞萨、TI 等传统 MCU 厂商的上车智驾芯片算力大都在 10TOPS 以下,如牢牢占据 L1~L2 级别视觉 ADAS 芯片市场的 Mobileye EyeQ3/Q4 的算力仅为 0.256TOPS 和 2.5TOPS。
不过也有特殊的,比如 2016 年搭载于特斯拉 HW2.0 平台的英伟达 Tegra Parker SoC 算力就提高到了 24TOPS,同时把 GPU 路线的自动驾驶 SoC 正式推向市场。
2019 年~2023 年间跨域集中式架构发展提速,英伟达开始引领高算力市场,相关电子供应链结构同步发生转变,除了英伟达外,特斯拉自研 FSD 芯片崛起,国产品牌地平线、黑芝麻、芯驰等抓住国产替代窗口开始发力。此时,智驾芯片面向应用场景和汽车终端产品定位出现算力需求分化,行业形成共识,L2/L2+级别自动驾驶在短期内更具商业落地价值,纷纷发力抢占市场。
值得一提的是,在 L2/L2+级别的中高算力自动驾驶市场中,算力需求已经达到了 30 TOPS~1000 TOPS 这个范围,比如 2020 年英伟达发布的针对 L2 级别市场的 Xavier 芯片,已上车小鹏 P7/P5 等车型,算力为 30TOPS;2022 年地平线发布的 J5 芯片,已上车理想、比亚迪、蔚来旗下阿尔卑斯、哪吒等车型,算力为 128TOPS;同年英伟达又针对 L2+级别高阶辅助驾驶车型推出 Orin 芯片,成为主机厂合作的王者,算力为 256TOPS。根据业内人士反馈,Orin 芯片的出现给 Mobileye、地平线、高通、黑芝麻智能、寒武纪等自动驾驶芯片企业带来了空前压力。
传统的 EDA 工具常使用“经验法则”,需要设计人员根据直觉和经验进行优化,这种建模和仿真技术存在很多局限性,包括:无法从以前的设计中汲取经验,导致生产力受限且设计不够准确;多次迭代导致设计时间增加;HLS 通常需要更多的时间来完成综合;布局和布线取决于设计师的预测/经验,会增加运行时间;就时间和资源而言,制造成本高昂等。与此同时,车规级芯片的质量在很大程度上取决于底层半导体技术和设计规则,因此对 EDA 又提出了更高的要求。
所以对于一颗车规级大芯片而言,为了确保设计的正确性,必须在生产制造前进行大规模的仿真和验证,而芯片的算力规模越大、集成度越高,仿真验证的过程就会越复杂,设计人员需要更快地实现收敛和验证,来降低成本并提高结果质量。同时,传统的随机/自动测试模式生成(ATPG)方案在故障覆盖率方面已经不能满足实际需求。因此,将 AI 和 EDA 融合是大势所趋。
Cadence 作为 EDA 领域的深耕者和领导者,可以提供汽车智能设计所需的全部 EDA 工具、设计流程等,帮助工程师加速自动驾驶设计。同时,通过将 AI/ML 功能融入现有的 EDA 工具中,能够从手动到完全自动化不同等级产生更好、更可预测的结果,助力汽车厂商利用多学科分析和优化(MDAO)技术提高整体设计,从而实现更快速、更优质的结果,系统的精确行为建模也提高了产品保真度和安全性。
下面介绍两个 Cadence 在自动驾驶中所提供的典型解决方案——Cadence Tensilica 处理器 IP、Xcelium ML。
对于汽车芯片厂商来说,在将 Tensilica DSP 产品集成到系统级芯片的同时,可以快速、轻松地进行软硬件划分的探索分析,满足将来算法的演进同时大大降低 CPU,GPU 和 AI 处理器的负载。同时使用 Tensilica Instruction Extension(TIE)语言自动生成处理器扩展和与之匹配的软件工具,并创建特定领域的差异化解决方案。
值得一提的是,搭载 FlexLock 的 Tensilica Xtensa 处理器现已通过车规级安全认证,完全符合汽车安全完整性等级 D 标准,提供 ASIL-D 系统级和 ASIL-D 随机故障防护,适用于功能安全(FuSa)应用,可以帮助更多大芯片设计厂商将安全模块集成到 SoC 中,减少模块设计和验证时间,增加产品先发优势。
以汽车雷达模块中的 SoC 为例,其通常由多个处理元件组成,包括控制器 CPU 和一个或多个DSP 等。当 SoC 中的晶体管出现随机故障时,包括晶体管或其他物理元件磨损并卡在逻辑“0”或“1”处,由于 α 粒子引起的静态故障导致内存位从“0”翻转为“1”等永久性故障,或是由 SoC 中的信号串扰等噪声引起的瞬态故障等,这些故障都可能发生在与处理器紧密耦合的逻辑门或存储器中的处理元件中,最终造成安全问题。
因此,系统设计人员必须设定一个安全目标,即 DSP 中的随机故障不得导致车道标记等物体检测失败。该安全目标将指导设计人员采取适当的安全机制,以便在检测到随机故障时,安全控制器会收到通知并可以采取措施,例如重新初始化 DSP 等。如果 DSP 已经进行处理,则安全控制器负责采取措施确保在 DSP 重新初始化之前/期间达到安全状态。
在这种设计中,位于“安全岛”中的安全控制器可以起到安全关键决策的作用。当然,控制器也可能会出现随机故障,如果控制器检测到 DSP 故障,但控制器采取了错误的操作来响应该故障,从而使系统处于不安全状态,这类故障可能会产生严重后果,这种情况下设计人员就需要采用冗余的设计方法,让两个控制器同步运行,来大大降低此类事件发生的可能性。
综上,为了实现系统级别的安全目标,像雷达模块中的 SoC 这样的处理器设计是非常复杂的,所以芯片设计企业通常会向可靠的第三方购买 IP,来简化设计流程,提高流片的成功率,而 Tensilica 处理器 IP 是个不错的选择。
其中,Xcelium Machine Learning(ML)App 利用专有的机器学习技术来缩短回归时间,可从以往的回归运行中学习并指导 Xcelium 随机引擎,在实现相同覆盖率的前提下大幅度减少仿真回归周期,或者产生特定覆盖点的激励触发更多的 bug 来提高验证质量。
同时,Cadence 对特定领域还提供了相应的 App,包括混合信号、基于机器学习的测试压缩和功能安全,可以帮助汽车芯片设计团队尽早实现对 IP 和系统级芯片(SoC)设计的验证收敛,非常适合 Level 2+级以上 SoC 设计。
此外值得一提的是,瑞萨电子在不断使用机器学习进行回归迭代过程中,在实现 100% 覆盖率的前提下,将工作量减少了 3.6 倍。
瑞萨电子利用机器学习大大减少回归运行次数(从 3774 次减少到 1168 次),成功在规定时间内实现产品上市。除了节省资源、时间和加速覆盖率收敛外,Xcelium ML Apps 还为瑞萨电子节省了约 27 个工时。
