对于高性能计算来说,算力是第一要素,通常需要达到每秒万亿次级的计算速度,这对系统的处理器、内存带宽、运算方式、系统 I/O、存储等都提出了更高的要求。如何解决构建下一代超级计算机面临的性能、延迟、功耗及安全性问题,成为了行业关注的重点。
系统性的挑战同样存在于硬件层面,对于高性能计算芯片来讲,面对的计算任务越是复杂,系统对其计算能力、计算速度、数据存储和带宽等方面的要求就越高。为了能在这场“算力革命”中获得竞争优势,越来越多的芯片研发企业开始采用 Chiplet 和多 die 互联的技术将模块化设计的思维引入半导体制造和封装中,以获得更高的计算密度、更多的计算接口和更高的芯片良率;同时采用 DDR5/HBM2e 内存处理、PCIe Gen6/CXL2.0/UCIe 高速接口,以应对更高的存储需求;此外,他们还在尝试尽量缩短自家产品的面世时间,以获得市场先发优势。
针对芯片设计系统化趋势,Cadence System Performance Analyzer 可以帮助芯片设计企业识别典型 SoC 的内存子系统、互连和外围设备中的性能下降原因,同时管理和监控系统内各种启动器的相互冲突的性能目标,分析和解决系统性能瓶颈;而 Cadence Helium virtual platform 可以通过验证和调试嵌入式软件/固件,以及在系统级芯片的纯虚拟和混合配置上启动操作系统,从而帮助芯片设计企业加速系统级芯片的开发,实现由软件驱动的软硬件协同验证。
此外,针对边缘计算的低功耗和热需求,Cadence 还提供了 Palladium DPA、Xcelium Powerplay back、Joules+Innovus power analysis and optimization 等工具,从而能够更快、更精确地实现动态功耗分析、峰值功耗估计等。
针对从边缘到云端的数据中心和 IoT 应用,Cadence SBSA 提供了 Arm System Ready 架构认证解决方案。针对计算密度增加带来的芯片规模超出光罩尺寸的问题,Cadence Integrity 3D-IC 平台可以提供更好的 3D-IC 设计工具,采用 Chiplet 和 2.5D/3D-IC 封装来解决设计尺寸接近或超过光罩尺寸导致的良率问题。
