可以肯定的是,电子系统设计师并不需要设计外壳或机械风扇。但创新型产品要求在运行环境中对自身所有的电子器件进行分析。这意味着机械系统和电子器件之间的联系比以往任何时候都更加紧密。汽车电子设备市场不断发展壮大,对机械和电子工程师来说,这是利用彼此的技能来打造创新型产品的绝佳机会。
此外,汽车设计中的许多功能依赖于信号和电源完整性,例如行人探测、自适应巡航控制、盲点监测、车道偏离预警、自动远光技术等。这些功能必须以同步的方式运行,因此测试必须同时进行。

另一个需要考虑的因素是,有些信号只与电动汽车的内部系统互动,有些则与 5G 网络等外部系统互动。信号相互依存,因此必须同时进行仿真,以确保安全、可靠和正确的运作,包括与已有的众多信号共存。
噪音、振动和硬度是现代汽车设计的另外三个重要因素。汽车里始终有些部件在移动和振动,在使用新材料的同时减轻重量会带来新的设计挑战。
在电动车设计中,声学仿真和测试非常重要,因为电动汽车没有内燃机噪音,所以更加安静。路噪和风湍流会严重影响电动汽车的驾驶体验。在电动汽车上,风吹过侧视镜产生的风噪非常明显。以前无人在意到的胎噪如今也成为一个潜在的问题。风噪和路噪会严重影响消费者对质量的感知。这些因素以及其他对燃油汽车影响不大的许多因素,会对电动汽车产生显著影响。因此,必须对设计进行重新考量,确保最佳的电动汽车驾驶体验。

从小型化、形状参数和空间限制,到 Wi-Fi、蓝牙、性能优化和多物理场,设备的复杂性呈指数级增长,带来了巨大的设计挑战。越来越多的产品通过某种形式的无线电信号(5G、蓝牙、Wi-Fi 或其他传输标准)与外界进行通信。
无线电是设计中最具挑战性的部件之一,因为设计的各个方面都与其他方面彼此影响。设计的关键不仅在于天线的形状,还在于每个连接器、封装引脚和印刷电路板 (PCB) 走线和外壳的形状,甚至还要考虑到人们会坐在什么位置使用无线电通信。
在分析此类设计以便进行优化时,必须同时分析(或模拟)设计的每个方面如何影响分析的整个范围,因为每个电子组件会影响其他组件,包括机械组件和外壳对性能的影响。孤立的仿真测试是远远不够的。

互联技术需要互联团队。很少有产品只涉及机械设计。配备了传感器、软件和电子设备的产品越来越多。所有的设计(不仅仅是机械设计)都必须无缝交互。这种紧密的交互意味着如今的产品必须作为一个整体进行测试,而不是对各个组件单独测试,这不仅是为了加快测试和优化流程,也是为了确保准确性。
各个设计团队各自为政的日子可能很快就会成为历史——这未必不是一件好事。各个团队未来将不再局限于讨论和分享结果。所有的工程参与者(机械、电气和软件)必须作为一个整体进行协同设计。各个团队应始终了解其他团队正在进行的工作,彼此影响和引导,最终实现高度创新和优化的设计。
